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We give a general Tauberian gap theorem for a class of Fourier kernels which
includes that of the Hankel transrorm F(x) = So~ J,(xu) f(u) du, v ~ -~.
Further, we discuss applications to Fourier gap series and the differentiability of
g(x) = L:;:O~ I (sin nn2x)/7tn~, 1<;; i1 < 3, a series supposedly due to Riemann, studied
by G. H. Hardy in 1916. © 1986 Academic Press. Inc.

1. INTRODUCTION

We are interested in the asymptotic behavior of the Fourier gap series

c(x)+S(x):= L (akcos Akx+bksinAkx), X-+xo,
k~O

rO > 0, L z slowly varying,

and will show that most of the results concerning nondifferentiability of
certain series are special cases of a general Tauberian gap remainder
theorem. One such case is:

Suppose Lr~o (Iakl + jbkl) < 00 and L I , L z are slowly varying functions.
Then the conditions

c(O) - C(X)}
)

= O(xmLz(ljx)) [resp. 0('" )]
s(x
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as x -+ 0 +, m > 0,
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imply that

k~n {::} = O((u/3L 2(u))-m L) (u)) Crespo o( ... )] as u -- 00.

We will show that differentiability depends strongly on the asymptotic
behavior of the tail sums

00

L (a k cos Ak X+ bk sin AkX),
k=n

The particular case f3 = 1, L 2 = 1, i.e., the case of Hadamard gaps, was com­
pletely treated by Freud [4,5], Hsieh T'ing-Fan [10], Belov [1] and the
author [12]. It was indeed Professor Freud who in 1962 was the first to
return to this old problem.

Smaller gaps are much more delicate to handle and often demand deep
results from number theory. However, we can show that the series

00 sin(nn V 10gP nx + ¢In)L III P (1~J1~v-l,pEIR;J1=I, p>I;¢Jn EIR )
n~2 nn og n

is nowhere differentiable. The best known example of this type is the so­
called Riemann function

Hardy [8] established the nondifferentiability of g Il(X) for all irrational
values of x (and some rational) and J1 < 5/2. Interest in this problem has
been revived by contributions of Gerver [6, 7], Queffelec [18], Smith
[20], Neuenschwander [14], Segal [19], Mohr [13], and Itatsu [11] as
well as Butzer and Stark [2]. The basic result of these contributions is that
g2 has no finite derivative at any point other than those of the form x =
(2A + 1)/(2B + 1), where it has derivative - 1/2.

In the second part of this paper we will deduce the following:

THEOREM 2. The function gll(x) has a finite derivative at x = r/s,
(r,s)=I, O~x~l, 3/2<J1<3, if and only if rs=1 (mod 2). gix) is
nowhere differentiable if 1~ J1 ~ 3/2.

More precisely, gll(x) cannot satisfy the condition

gil G+ h) -gil G) = o(lhl(Il- l
l/2)

for any rational x = r/s, (r, s) = 1, rs i= 1 (mod 2).

as h--O
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Let us formulate the general gap theorem needed in a convenient form
and now list the assumptions to be used. All functions are assumed to be
real and measurable. We consider the transform

F(x) = Jex) k(xu) f(u) duo
o

Assumptions on the function f:
There are constants (J(l > (J( ~ 0 such that:

(2.1 )

(a) ulXf(u)EL'(O, I),

(b) fEBV[l, (0),

(c) f(u) --+ 0 as u --+ 00,

(d)f(u)=o(u- 1
-

1X
), O<u~1. (2.2)

(b) together with (c) can be replaced by:

(b*) f E L2[ I, 00) and Ie;'" k(xu) f(u) du converges for 0< x < a,

(c*) fbounded in [1,00).

Assumptions on the kernel k:

(Cd k(u) and kl(u):= I~k(x) dx are bounded in O~u< 00,

(C 2 ) k(u)=O(u lX ) as u--+O+, (J(>O or, in the case (J(=O, k(u)=
k(O)+O(u lX') as u--+O+, k(O),fO, (J('>O, and k2(U):=I~k,(x) x Idx is
bounded in 0 ~ u < 00.

kM(s) denotes the Mellin transform of k(u):

the integral being assumed to converge absolutely or conditionally. We
need a further assumption:

(C 3 ) kM(s) kM(l- s) = I, 0 < Re s < I.

Then, k satisfying (Cd, (C 2 ), (C 3 ) is a symmetric Fourier kernel and
(2.1 ) defines a unitary transformation on L 2(0, 00). The following condition
(C4 ) is satisfied by a large number of Fourier kernels, including that of the
Hankel transform for which k(u) = j; J.(u), v~ -1/2.
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(C4 ) kM(s) is meromorphic and has no zeros in -a l < Re s < 1+ a,
al > a, and there holds uniformly in the strip as 11m sl -+ 00

We now introduce two classes of auxiliary functions: F(x) will be
dominated by xm

-
t L(1jx) w(x) (x -+ 0+ ), where w is positive and non­

decreasing such that

wo>O, x>O, y~ 1, b~O,

and L slowly varying in the sense of Karamata, i.e., L positive, measurable,
locally bounded and

L(AU)jL(u) -+ 1 as u -+ 00 for every A> O.

The most important case is w(x) = x b, L(u) = Ilog ul P, P E IR.
We now come to our general Tauberian gap remainder theorem.

THEOREM 1. If

(i) f and k satisfy the assumptions (2.2) and (Cd, (C 2 ), (C 3 ), (C4 ),

respectively,

(ii) for all u ~ Uo there is an interval I( u) with

uEI(u) andII(u)lj(uPL2(u))~ro>O, O<f3~1,

such that f(u) fullfils the following Tauberian condition in I(u):

sup If(v) - f(v)1 ~ v-mP+b(I-P)Lt(v) Lim-b(v) w(1jv),
ii,v E f(u).lii - vi .:; rov#L2(V)

where 0 < m (0 ~ m for a> 0) and 0 < m + b < a l + 1,

(iii) L 1and L 2 are slowly varying, uP- 1L 2(u) is nonincreasing and L t
satisfies the inequality

Lj(ud)jL1(u) ~ Kdo '

for each finite do.

Then under the further hypothesis

F(x) =tXl

k(xu) f(u) du = O(xm- 1L j(1jx) w(x)) as x -+ 0 +,

it follows that

f(u) = O(u-mP+b(I-P)Lt(u) Lim-b(u) w(1ju)) as u -+ 00.
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Remark. The "0" result can be replaced by the corresponding "0"

result.
The proof is to be found in [12, pp. 70-72]. However, we give an out­

line. First transform the integral (2.1) into the convolution form:
x ~ e( - 2nx), u~ e(2ny), e(x) = exp(x), t;6(x) = e(2nx) f(e(2nx)), K(x) =
2nk(e( - 2nx)), ljJ(x) = F(e( - 2nx)), ljJ(x) = (K x t;6 )(x) := J~ oc K(x - y) t;6(y)
dy. Then define a suitable function Q via QxljJ(x)=(QxK)xt;6(x) for all
real x, and derive the important relation

If(e(2nx))1 ::::; 4 sup (f(e(2n(x- y))) E(y) - f(e(2n(x - v))) E(v))
0,;; v - y,;; 2/D

+6e(-2nx)IQxljJ(x)1 =: T1 + T2,

say, where E(y) = e( - ~Q2 .y2), ~ > O. Next one estimates the first term T,
on the right side with the aid of the Tauberian condition

sup If(e(2nji)) - f(e(2nY))1
j"v E 1(e(2rrx).I.v - yl ,;; r2e(2rr({J - 1 )y)L2(e(2rrv))

= O(e( -2n(3my) e(2nb(1 - (3) y) L 2-m-h(e(2ny) L,(e(2ny)) w(e( -2ny))),

where II(e(2nx»I~re(2n«(3-1)x) L 2(e(2nx), r>O, x~xo. If 2/Q::::;
min(r 2 , J/8) e(2n«(3 - I) x) L 2(e(2nx)), and ~ is small enough, we get for
some r, < 1

Tj::::;K, sup [f(e(2n(x-v»))e(-~Q2v2/2)1
oe(2rr({J - I )X)L2(e(2rrx»';; 81vl';; 4d

+ rdf(e(2nx)j +K2e( -~Q2d2/16)

+ K2e( -2n(3mx) e(2nb(1 - (3) x)

x L 2 m-h(e(2nx) L 1(e(2nx) w(e( -2nx)),

when x E X, where X denotes the set of all x ~ X o whose distance from both
ends of I is greater than (J/4) e(2n«(3 - 1) x) L 2(e(2nx)), J = J(r). For the
second term T2 we find

Therefore,

If(e(2nx))1 ::::; K] sup If(e(2n(x - v»)) e( - ~Q2V2/2)1
oe(2rrx({J - '»L2(e(2rrx)';; 81vl';; 4d

+ K 4 Qm+he( -2nmx) L j (e(2nx)) w(e( -2nx».

Choosing Q=Qoe(2n(I-(3)x)/L2(e(2nx)) and Q o sufficiently large, the
conclusion of Theorem 1 follows by iteration.
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3. FOURIER GAP SERIES

We now formulate some corollaries to Theorem 1. Given
'x

g(x)= L (akcodkx+bksinAkx)=:c(x)+s(x), (3.1)
k~O

where {Ad increases (Ao = 0) and Ak+ 1 - Ak~ rOL 2(A k) AL ro> 0, k ~ k o,

0</3<1.

COROLLARY 1. Suppose "Lf'=o (IGtkl + Ibkl)< 00, and L i , ware given as
in Theorem 1. Then the conditions

c(O) - C(X)} {m ~ 0
() = O(xmL 10/x) w(x)) [resp. o(···)J as x --+0+,

sx m>O

imply that

f {~k} = O(A;mP+b(l-Pl Lt(An) Lim-h(An) wOllen))
k=n k

[resp. o( ... )J as n --+ 00.

Proof Putf(u) = Lf'=Oak, u=O,f(u)=Lf'=n{h~}, An- 1 <U<An, n= 1,
2,3,.... Then c(x), s(x) of (3.1) can be written as

C(x)= - r: cos(xu)df(u)=c(O)-x Ioc

sin(xu)f(u)du,
0- 0

s(x)= -I oc

sin(xu)df(u) =X roc cos(xu)f(u)du.
o 0

Note that Jnul2 J -1/2(U) = cos u and Jnul2 J 1/2(U) = sin u are Fourier
kernels and satisfy the conditions (C 1), ••. , (C 4 ). Thus we can apply
Theorem 1 directly.

Differentiability in the case /3= 1, L 2(u)= 1, i.e., for Hadamard gaps, was
completely treated by Freud [4, 5J, Hsieh T'ing-Fan [10], Belov [1], and
in [12]. This result is contained in:

COROLLARY 2. (a) Ifg(x) of (3.1) is differentiable in at least one point,
then

(b) If
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then g(x) is smooth and differentiable in each interval at an infinite set of
points. g(x) is differentiable at those and only at those points x where the
series obtained by formal differentiation is convergent and the derivative of g
coincides with this sum.

Remark. Part (a) follows directly from Corollary 1; part (b) must be
obtained independently.

Setting b=O, L](u)=L 2(u)=I, w(x)=I, our Corollary 1 contains
another well known precise result given by Hsieh T'ing-Fan [10]:

COROLLARY 3. If g(x) satisfies a Lipschitz condition of order m, m > 0,
at X o, then it follows that

If g(x) is differentiable at x o, then

Remark. Hardy [9] and Hsieh T'ing-Fan [10] establish slightly more:
E.g., the series L:~ I (sin nn 2x)jnn is divergent for certain irrational x and
nowhere differentiable.

EXAMPLE. The function

x) = ~ sin(e(n
V

) x + rPn)
g( 1... (") Jl- I

n~ len n

is nowhere differentiable.
Here m = f3 = 1 and L 2(u) = log(v 1)/vU , w(x) = 1. We may assume

without loss of generality that g'(xo) = 0. It follows that

n l -Jl/e(n V
) = o(n l

-- v/e(n V
)) as n --+ 00.

This contradiction establishes the result.

Note that Prohorenko [17] showed the nondifferentiability of this g(x)
for almost all real x where v~ 1/2, J1 ~ 3/2.

4. FURTHER ApPLICATIONS

Next, we study the special sequence Pd, Ak = k V logl' k, k ~ ko, v> 1,
P E IR. Then,
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Put Lz(u) = logp/v U, b = 0, w(x) = 1, {3 = 1 - Ilv, m > 0. In this regard we
obtain:

COROLLARY 4. Under the hypothesis

g(x)-g(xo)=O(lx-xol m L1(l/lx-xol)) Crespo 0("')]

as x ~ X o it follows that

= O(n(l-v)mL\(n) log-pm n) Crespo 0("')] as n ~ 00.

Proof By Corollary lone has

).,;-m(l-I/v) log-pmivAn = O(n(l -- vIm 10gPm(1-v)/v n log-pmivn).

EXAMPLE. The function

7C sin(nxn V 10gP n + 1J )
g(x) = '" nn'::z nn V

I 10gP n

for v> 2 or p> 1 if v = 2 is continuous but nowhere differentiable. So series
having all relevant types of gaps are covered by the various corollaries of
the general theorem.

5. RIEMANN'S FUNCTION

We now focus our attention to the special gap series

CD' Z

( ) = '" Sill nn x
gJ.t x 1... I"

n~l nn
1~ J1 < 3. (5.1 )

A recent informative report by Butzer and Stark [2] sheds new light on
the fascinating history of this function. As is mentioned in the articles of
Neuenschwander [14] and Segal [19], it was Hardy [8] who took up this
example of a "nondifferentiable" function and proved that gz has no finite
derivative at any point x, where x is either irrational or rational of the form
2AI(4B+ 1) or (2A + 1)/(2B), and more generally that gJ.t is nondifferen­
tiable at any irrational value of x if J1 < 5/2.
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Hardy's proof depends substantially on results by himself and Littlewood
in a paper on Diophantine Approximation published in 1914 [9]. They
present a detailed investigation of special elliptic 8-functions and of the
corresponding trigonometrical series. We recall a fundamental property of
Gaussian sums [9, p. 195J, namely

r 2A + 1 .
-=-2- (A, Btntegers)
s Bk mod 2s

= ±2yTs,
= ±2iyTs,

=0,

rjs=2Aj(4B+ 1)

rjs = 2Aj(4B + 3)

r 2A + 1
- ---
s 2B+ I"

(5.2)

This property is the key to the differentiability of gw
Gerver [6, 7] in two lengthy papers, Queffelec [18 J in his thesis, and

Smith [20] in a short and elegant manner show that g2 has no finite
derivative at any rational point other than those of the form x = (2A + 1)/
(2B + 1), A, B integers. Later, Mohr [13] and Itatsu [11] published other
nice proofs of this result.

Unfortunately, Smith's article contains some mistakes, and one of them
seems to be rather serious. Indeed, the integral obtained by a transfor­
mation in the proof of Lemma 2 [20J diverges, and on p.466 the relation
(to) is to be replaced by

f(x ± h2) = f(x) - 2 1
/
2[S(xH C(x)]hjs + O(h Js J

/
2).

Therefore, the paragraph "Derivates at other points" (i.e., the irrational
points) seems to be erroneous since

(xn - x)I/2(4qn + 1) ---+ 00 as n ---+ 00.

More precisely, his h . s does not tend to zero and so neither do the remain­
der terms at irrational values of x which are poorly approximated by
rational x n .

We cannot handle the case where x is irrational by our methods either,
because Corollary 4 applies only to rational points without further
explanations. Thus, one must go back to Hardy's original proof, which
utilizes elliptic 8-function theory. No other proof seems to be known up to
this day. In this context Segal's remark (cf. [19, p. 81J): "In any case, no
proof utilizing elliptic functions (or even indicating their relevance) is
known" is somewhat surprising. We have a further
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COROLLARY 5. Let X o = rls, s > 0, (r, s) = 1, 1 < J1 ~ 2. If gl'(x) of (5.1)
is differentiable at the point rls, then

2s
S2s(rls)= L e(inerls) =0.

k~l

Proof Assume that Lk\~ 1 e(ink2rls) = a + ib =f. 0, and g'(xo) exists. By
Corollary 4 we conclude

oc

L e(ink2rls)lkl' = o(l/n) as n ----. 00.
k~n

But the tail sum has the asymptotic behavior

OC' 2s 00

L e(ink2rls)lkl' = L L e(int2rls)/(2ks + t)l'
k=2Ms+ 1 1= 1 k~M

This leads to a contradiction. Thus Tauberian theorems yield necessary
conditions for differentiability.

In the same way we can generalize the Tauberian implication of a
theorem due to Queffelec [18]. We consider a real function P, where P is
positive, nondecreasing and

for which further there exists a positive integer t with

P(n + t) X o == P(n) xo(mod 2),

Indeed, if the series

(x).= ~ sin(nP(n) x) K ~ 1
g P." . L.. P()" ,

n~ 1 n n

is differentiable at x o, then

21

L e(inP(n)xo)=O.
n= 1

(5.3 )

The Abelian assertion, namely that (5.3) is also sufficient for the differen­
tiability of gp,] at the point x o, was announced by Gerver [7] and Quef­
felec [18], The relevance of (generalized) Gaussian sums in all proofs,
whether of Tauberian or Abelian type, is quite evident.
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6. RIEMANN'S FUNCTION, CONTINUED
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In this paragraph we want to study the degree of differentiability of the
example

00' 2

(x) = " sm rrn x
g L. I"

n~l rrn
1 < J1 < 3.

By generalizing the method of Smith [20] we will show that

00 sin rrnYx
I rrnY 1/2

n=l

has no finite derivative at any rational Xo = rls. Therefore,

is nowhere differentiable by taking into account Hardy's result for the
irrational X o' We will use the Smith technique because we are unable to
prove or disprove the following assertions:

Define

J1, v> 1.

Then the (non)differentiability of II-' at the point x implies the
(non)existence of l~l(X), J1l > J1 (J1l < J1).

Several lemmas will be needed. For the first see Oberhettinger [15,
p. 23, 136].

LEMMA I. For -1 < J1 < 3, J1 i= lone has

J
.7O sin rrx 2

-- cos(2rrxy) dx
o xl-'

fcc sin rrx 2

--sin(2rrxy) dx
o xl-'

640:48/3-5
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LEMMA 2. For IYI-+ w one has

foo sin nx2

--I'- cos(2nxy) dx
o x

= Ii ~ 2 r C~ Ii) nl' - 3/2Iyll'- 3/r (~)

-~ IYI-I' sin ( n (y2-~)) + 0(lyll'-4 + IYI-I'-I),

f
oo sin nx2

--I'- sin(2nxy) dx
o x

= Ii ~ 1 F ( 4 ~ Ii) nl' - 3/2sgn y Iy II' - 3/r (1 ; Ii )

+ ~ sgn yl YI-I' sin ( n (y2+~)) + O( Iyll' - 4 + IYI-I' - I).

Proof For fixed values a, c and as Izl-+ w (see [16, p.256J)

F(a)
IFI(a;c;z)= ( )e(±ina)z-U(l+a(c-a-l)/z+0(l/lz I

2
))

rc-a

where the sign is taken as positive or negative according as 1m z > 0 or
1m z < 0, - n < arg z < n. The conclusion of Lemma 2 follows by the aid of
Lemma 1.

An elementary but tedious proof can also be given by the method of the
stationary phase as in Olver [16, p. 96-104]. Indeed, without loss of
generality we may assume 0 < Ii < 1. Then consider the integrals

I foo e(in(u2 ±2uy)) d
+ = " u as y -+ w.
- 0 u~

Substituting t=(U/y)I-I', ny2=X, 1/(I-Ii)=IX, yields

To evaluate 1+ we apply Theorem 13.1 [16J twice and obtain two terms of
the asymptotic expansion (as y -+ w) in the form
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It is more complicated to estimate I_since p'(t) vanishes at t = 0 and t = 1.
We split I_into three integrals and find

L = e( - in( 1 - fl )/2) r(l - fl )(2ny Y' - I (l - (2 - fl)( 1 - fl )/(4iny2) + '" )

+ y-lle(inU- y2») + "', as y ~ 00.

LEMMA 3. Define

sin nx
cPl = nlxl lll2 ' x#O,

1- cos nx
cP2 = nlxl ll12 '

Then the Fourier transform h of cP I (x2) + icP2(X2) has the expansion for
Iyl ~ oo(ljJ)x) :=t/J/x2), j= 1, 2)

~ ~ IX e(inx2) - 1
h(y)=ljJdy)+iljJ2(y):= -en in[x[1l e(-2nixy)dx

= e( - in.(y2 - 1/4)) + fl- 2 r (3 - fl) n ll - 5/21 ylll-3/T (I:.)
mlylll 2 2 2

+ 0(y-2 + lylll-4).

h(O) =~re; fl) n(1l 3)/2e(in(l- fl)/4).

Proof Using Lemma 2,

I
x e(inx2) - 1
-Y: inlxlll (cos(2nxy) - i sin(2nxy») dx

2 fX' cos(nx2) - 1
=-;- cos(2nxy) dx

m 0 x ll

2 fen sin nx 2

+- --cos(2nxy)dx.
n 0 x ll

Integrating the first term on the right by parts gives for yolO

f
X! cos(nx2) - 1

o --x-I,--cos(2nxy)dx

fl fX cos(nx2
) - 1 1 IX! sin nx2

=-2 + I sin(2nxy) dx +- --._-\ sin(2nxy) dx
ny 0 x ll y 0 x ll

=~nl' 5/
2
(fl-2) TC;fl) IYIIl-5/T(~)

+ 11YI-1l cos(n(y2 -1/4)) + 0(y- 2+ IYII'-6) as Iyl ~ 00.
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The result for /1 = 2 remains valid without the second term and can be
obtained in an elementary way.

Now we shall make use of Lemma 1 in [20J to obtain an estimate of

00

Qi(OC):= I ht/Ji(hk + hoc) as h-+O+,
k~ --00

i= 1, 2. (6.1 )

It will depend on the Poisson summation formula. Here we need
(see [20J):

LEMMA 4. If t/JEC(IR), t/J(x)=O(lxl-ji) as Ixl-+CXJ, /1>1, and
1tf!(Y)IIYIP~K, P>I, it follows that Q(oc)=tf!(O)+O(hP) as h-+O+ for
any realoc.

LEMMA 5. There hold the estimates

00

L (ht/J 1(hk + hoc) + iht/J2(hk + hoc))
k= -00

(hk +h:::;0) + c4(oc) h3- ji +~ hji k~l CO:~:kOC e (in (~- (~r))

+ O(h2 + h4 -ji) (1 < /.l < 3, c4 (oc) E IR; h -+ 0+ ).

Proof In the case 1 < /.l ~ 2 Lemma 4 is directly applicable, in the case
2 < /1 < 3 only to the function t/J 2'

To estimate Lf= -a:; ht/J 1(hk +hoc) we introduce the function
H(x):= [xI 2 -ji/(1 +x2) having the same asymptotic behavior as t/Jl in the
neighborhood of the origin. We find (see [15, p. 5])

I fa:; 2- cos 2nxy d
= x ji x

o 1+ x2

fa:; foo cos 2nxy
= x 2-jicos2nxydx- x 4 -ji 2 dx=:II-I2 ,

o 0 l+x

Integrating by parts we obtain

1 ( fCC 3-ji sin 2nxy d 2 IX 5--ji sin 2nxy d )
12 = 2ny - (4 - /.l) 0 x 1+ x2 X + 0 x (l + x2? x

1 ( foo cos 2nxy )= 4n2y2 -(4-/1)(3-/1) 0 x 2-ji 1 +x2 dx+O(y-2) .
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These estimates yield

317

Now we can apply Lemma 4 to IjJ 1 - H, but we must first find the
asymptotic expansion of Lk= -co hH(hk +hrx), 0 < rx < 1. For this purpose
we proceed as in [3, pp. 153-163]. Choose a contour CN,I) symmetric about
the real axis, consisting of a segment of the line Re t =N + 1/2 + rx and two
curves Ct,1) and CN,I)' The curve C t,1) is a part of a curve C; , going from
the point t = 8 to infinity in the upper half-plane, and meeting each line
Re t = A, A> 8, exactly once, The curve CN,I) is symmetric to Ct,1) in the
real axis,

Consider now the integral

1 f 2 cot n( t - rx) dI =- t -/1 t
N,I) 2' 2 + t 2 '1 CN.O Z

Passing to the limit as N -+ 00, we obtain

0< 8 < rx.

11)= f (rx+k)2-/1/(Z2+(k+rxf)= fCC t2-/1/(t2+z2)dt
k=O I)

+t+ t2-/1/[(Z2 + t2)(e( -2ni(t - rx)) -1)] dt
o

+ f _t2-/1/[(Z2 + t2)(e(2ni(t - rx)) -1)] dt
Co

where

t2k + 2 - /1 t2k + 2 - /1

dk(8) =f dt +f dt,ct e( -2ni(t - rx)) -1 Co e(2ni(t - rx))-1

if we expand the sum of the last two integrals in (6.2) in an asymptotic
series in powers of l/z2 and integrate term by term. We take 8 = 0 and
evaluate the principal term. Thus,
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and similarly

k~l hH(hk) = (i)!cos C; f.l n) + cs(O) h3-1' + O(hS-I') as h -40+.

This will finally lead to the proof of our second main theorem:

Proof of Theorem 2. For f.l = 1 and f.l = 2 the result is given by Hsieh
T'ing-Fan [10] and Smith [20]. In the other cases we proceed as in [20].
Indeed,

hI' 00

= g(x) - 2 L sin(nn2x) t/J 2(nh).
n= -a:;.

Writing n=2ks+t, 0:::;;t:::;;2s-1, then sin(n(2ks+t)2 r/s )=sin(nt2r/s),
and by Lemma 5

(g(x + h2)+ g(x - h2»/2

hl'-12s-1
= g(x) --4- L sin(nt2r/s)' {t/J;(O)

s 1=0

00 cos(nkt/s) ((( k)2 1))
-2(2sh)1' k~1 nkl' cos n 2sh -4:

+ O((Sh)2 + (Sh)4-1')}.

Similarly, as h -4 0 +,

(g(x+h 2)- g(x-h2»/2

xo 2

L cos nn x. 2h2= sm nn
nnl'

n=l

hl'-12s-1 00

=-- L cos(nt2r/s) L 2sht/Jl(2skh + th)
4s 1 =0 k= -00

2ks + '" 0

hl'-l 2s··1 ~

=-- L cos(nt2r/s)- {t/JdO) + c4(t)(2hs)3-1'
4s 1=0

+2(2shY k~l cos~:':t/S)sin(nG-(2~hr))

+ O((Sh)2 + (Sh)4-1')}.
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But Li~(/ e(int2r/s) = 0 if and only if rs =1 (mod 2), (cf. (5.1 )). Thus, for
3/2 <J1. < 3,

and the symmetric derivative lim h 2~ o( g(x +h2) - g(x - h2))/h2exists if and
only if x = (2A + 1)/(2B + 1), A, B integers.

To treat the case 3/2 ~ J1. > 1, rs =1 (mod 2), consider

2s-1 00 cos(nkt/s) ((( k)2 1))
X(h):= (~o cos(nt

2
r/s) k~1 kit sin n 2sh -4

2s - 1 r t
dk := L cos nt2

- cos nk-.
s s

It is easy to verify that

for keven,
2"

L dk =2s.
k=!

We put (2sh)-2=U. Then :L;;V=1 (ddk lt ) sin(n(k 2u-±)) converges
absolutely and uniformly as N ~ OCJ to the continuous, nonconstant, 2­
periodic function i(u). Thus, using the uniqueness theorem for Fourier
series, lim u ~ 0(; i(u) does not exist, and therefore the same holds for the
symmetric derivative at x = r/s. For the other points see Corollary 5.

Similar arguments hold for the almost periodic function

x

L (dk/k J1
) sin(n(Ak u - J·o))

k~1

which occurs in the following section.

7. THE CASE OF MORE GENERAL GAPS

Finally, we want to give some hints on how to handle the case

00 sin nnVx
g(x)= L v-1/2'

n= 1 nn
v~ 2, VE N.
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To carryover the method of Hardy (and Littlewood) [8,9] and to show
that g(x) has no finite derivative for any irrational x seems to be very dif­
ficult. To the best of our knowledge no further results are known.

However, the nondifferentiability at rational values of x can be settled as
in Section 6. Indeed, to evaluate

(g(x +hV)+ g(x - hV) - 2g(x))jhV,

we must study the asymptotic behavior of

foo cos(nxV) - 1
o nx v - 1/2 cos(2nxy) dx as y ~ 00.

This leads after integrating by parts to the integral

foo sin nx v

--1-/2- sin(2nxy) dx.
o nx

If we apply the saddlepoint method to H(y) := So xYe( -XV) e(xy) dx as in
[3, p. 141], we find the crucial asymptotic estimate

To complete the argument one proceeds as in the proof of Theorem 2.
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